A Short Proof and Generalization of Lagrange's Theorem on Continued Fractions

نویسنده

  • Sam Northshield
چکیده

We present a short new proof that the continued fraction of a quadratic irrational eventually repeats. The proof easily generalizes; we construct a large class of functions which, when iterated, must eventually repeat when starting with a quadratic irrational.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS

In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.

متن کامل

Pattern Equivariant Cohomology and Theorems of Kesten and Oren

In 1966 Harry Kesten settled the Erdős-Szüsz conjecture on the local discrepancy of irrational rotations. His proof made heavy use of continued fractions and Diophantine analysis. In this paper we give a purely topological proof Kesten’s theorem (and Oren’s generalization of it) using the pattern equivariant cohomology of aperiodic tiling spaces.

متن کامل

On multidimensional generalization of the Lagrange theorem on continued fractions ∗

We prove a multidimensional analogue of the classical Lagrange theorem on continued fractions. As a multidimensional generalization of continued fractions we use Klein polyhedra.

متن کامل

On the norm of the derived‎ subgroups of all subgroups of a finite group

In this paper‎, ‎we give a complete proof of Theorem 4.1(ii) and a new‎ ‎elementary proof of Theorem 4.1(i) in [Li and Shen‎, ‎On the‎ ‎intersection of the normalizers of the derived subgroups of all‎ ‎subgroups of a finite group‎, ‎ J‎. ‎Algebra, ‎323  (2010) 1349--1357]‎. ‎In addition‎, ‎we also give a generalization of Baer's Theorem‎.

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American Mathematical Monthly

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011